Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(49): e2306390120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015841

RESUMO

Hepatitis B virus (HBV) remains a major public health threat with nearly 300 million people chronically infected worldwide who are at a high risk of developing hepatocellular carcinoma. Current therapies are effective in suppressing HBV replication but rarely lead to cure. Current therapies do not affect the HBV covalently closed circular DNA (cccDNA), which serves as the template for viral transcription and replication and is highly stable in infected cells to ensure viral persistence. In this study, we aim to identify and elucidate the functional role of cccDNA-associated host factors using affinity purification and protein mass spectrometry in HBV-infected cells. Nucleolin was identified as a key cccDNA-binding protein and shown to play an important role in HBV cccDNA transcription, likely via epigenetic regulation. Targeting nucleolin to silence cccDNA transcription in infected hepatocytes may be a promising therapeutic strategy for a functional cure of HBV.


Assuntos
Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/fisiologia , Epigênese Genética , Replicação Viral/genética , DNA Viral/metabolismo , DNA Circular/genética , DNA Circular/metabolismo , Neoplasias Hepáticas/genética , Hepatite B/genética , Hepatite B/metabolismo
4.
Clin Infect Dis ; 77(Suppl 3): S216-S223, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37579202

RESUMO

Global elimination of hepatitis C virus (HCV) will be difficult to attain without an effective HCV vaccine. Controlled human infection (CHI) studies with HCV were not considered until recently, when highly effective treatment became available. However, now that successful treatment of a deliberate HCV infection is feasible, it is imperative to evaluate the ethics of establishing a program of HCV CHI research. Here, we evaluate the ethics of studies to develop an HCV CHI model in light of 10 ethical considerations: sufficient social value, reasonable risk-benefit profile, suitable site selection, fair participant selection, robust informed consent, proportionate compensation or payment, context-specific stakeholder engagement, fair and open collaboration, independent review and oversight, and integrated ethics research. We conclude that it can be ethically acceptable to develop an HCV CHI model. Indeed, when done appropriately, developing a model should be a priority on the path toward global elimination of HCV.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepatite C/epidemiologia , Hepatite C/prevenção & controle , Hepatite C/tratamento farmacológico , Consentimento Livre e Esclarecido , Antivirais/uso terapêutico
6.
Clin Infect Dis ; 77(Suppl 3): S257-S261, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37579208

RESUMO

For any controlled human infection model (CHIM), a safe, standardized, and biologically relevant challenge inoculum is necessary. For hepatitis C virus (HCV) CHIM, we propose that human-derived high-titer inocula of several viral genotypes with extensive virologic, serologic, and molecular characterizations should be the most appropriate approach. These inocula should first be tested in human volunteers in a step-wise manner to ensure safety, reproducibility, and curability prior to using them for testing the efficacy of candidate vaccines.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Reprodutibilidade dos Testes
7.
Viruses ; 15(7)2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37515216

RESUMO

Hepatitis delta virus (HDV) is the smallest known human virus and causes the most severe form of human viral hepatitis, yet it is still not fully understood how the virus replicates and how it interacts with many host proteins during replication. This review aims to provide a systematic review of all the host factors currently known to interact with HDV and their mechanistic involvement in all steps of the HDV replication cycle. Finally, we discuss implications for therapeutic development based on our current knowledge of HDV-host protein interactions.


Assuntos
Vírus Delta da Hepatite , Replicação Viral , Humanos
8.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154158

RESUMO

Hepatitis delta virus (HDV), a satellite virus of HBV, is regarded as the most severe type of hepatitis virus because of the substantial morbidity and mortality. The IFN system is the first line of defense against viral infections and an essential element of antiviral immunity; however, the role of the hepatic IFN system in controlling HBV-HDV infection remains poorly understood. Herein, we showed that HDV infection of human hepatocytes induced a potent and persistent activation of the IFN system whereas HBV was inert in triggering hepatic antiviral response. Moreover, we demonstrated that HDV-induced constitutive activation of the hepatic IFN system resulted in a potent suppression of HBV while modestly inhibiting HDV. Thus, these pathogens are equipped with distinctive immunogenicity and varying sensitivity to the antiviral effectors of IFN, leading to the establishment of a paradoxical mode of viral interference wherein HDV, the superinfectant, outcompetes HBV, the primary pathogen. Furthermore, our study revealed that HDV-induced constitutive IFN system activation led to a state of IFN refractoriness, rendering therapeutic IFNs ineffective. The present study provides potentially novel insights into the role of the hepatic IFN system in regulating HBV-HDV infection dynamics and its therapeutic implications through elucidating the molecular basis underlying the inefficacy of IFN-based antiviral strategies against HBV-HDV infection.


Assuntos
Vírus da Hepatite B , Vírus Delta da Hepatite , Humanos , Vírus Delta da Hepatite/fisiologia , Hepatócitos , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico
9.
Commun Biol ; 6(1): 556, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225764

RESUMO

Since the emergence of the Omicron variants at the end of 2021, they quickly became the dominant variants globally. The Omicron variants may be more easily transmitted compared to the earlier Wuhan and the other variants. In this study, we aimed to elucidate mechanisms of the altered infectivity associated with the Omicron variants. We systemically evaluated mutations located in the S2 sequence of spike and identified mutations that are responsible for altered viral fusion. We demonstrated that mutations near the S1/S2 cleavage site decrease S1/S2 cleavage, resulting in reduced fusogenicity. Mutations in the HR1 and other S2 sequences also affect cell-cell fusion. Based on nuclear magnetic resonance (NMR) studies and in silico modeling, these mutations affect fusogenicity possibly at multiple steps of the viral fusion. Our findings reveal that the Omicron variants have accumulated mutations that contribute to reduced syncytial formation and hence an attenuated pathogenicity.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Mutação , Fenótipo
10.
Hepatology ; 78(3): 929-942, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36896966

RESUMO

BACKGROUND AND AIMS: Mutations within the precore (PC) and basal core promoter (BCP) regions of the HBV genome are associated with fulminant hepatitis and HBV reactivation. These mutations may enhance viral replication, but little is known about whether they directly induce damage to the liver. We investigated mechanisms of direct cytopathic effects induced by the infection with PC/BCP mutants in the absence of immune response in vitro and in vivo . APPROACH AND RESULTS: Mice with humanized livers and hepatocytes derived from humanized mice were infected with either wild-type or mutant-type PC/BCP HBV, and the HBV replication and human hepatocyte damage were evaluated. HBV proliferated vigorously in mice with PC/BCP-mutant infection, and the severe loss of human hepatocytes with a slight human ALT elevation subsequently occurred only in PC/BCP mutant mice. In PC/BCP mutant infection, the accumulation of HBsAg in humanized livers colocalized with the endoplasmic reticulum, leading to apoptosis through unfolded protein response in HBV-infected hepatocytes. RNA-sequencing revealed the molecular characteristics of the phenotype of PC/BCP mutant infection in a humanized mouse model. Reduced ALT elevation and higher HBV DNA levels in this model are consistent with characteristics of HBV reactivation, indicating that the hepatocyte damage in this model might mimic HBV reactivation followed by hepatocyte damage under immunosuppressive conditions. CONCLUSION: PC and BCP mutations were associated with enhanced viral replication and cell death induced by ER stress using HBV infection models. These mutations might be associated with liver damage in patients with fulminant hepatitis or HBV reactivation.


Assuntos
Vírus da Hepatite B , Necrose Hepática Massiva , Humanos , Animais , Camundongos , Mutação , Fenótipo , Morte Celular , DNA Viral/genética , Genótipo , Antígenos E da Hepatite B/genética
11.
J Virol ; 97(1): e0178822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36519897

RESUMO

Despite the development of highly effective hepatitis C virus (HCV) treatments, an effective prophylactic vaccine is still lacking. HCV infection is mediated by its envelope glycoproteins, E1 and E2, during the entry process, with E2 binding to cell receptors and E1 mediating endosomal fusion. The structure of E1E2 has only been partially resolved by X-ray crystallography of the core domain of E2 protein (E2c) and its complex with various neutralizing antibodies. Structural understanding of the E1E2 heterodimer in its native form can advance the design of candidates for HCV vaccine development. Here, we analyze the structure of the recombinant HCV E1E2 heterodimer with the aid of well-defined monoclonal anti-E1 and E2 antibodies, as well as a small-molecule chlorcyclizine-diazirine-biotin that can target and cross-link the putative E1 fusion domain. Three-dimensional (3D) models were generated after extensive 2D classification analysis with negative-stain single-particle data sets. We modeled the available crystal structures of the E2c and Fabs into 3D volumes of E1E2-Fab complexes based on the shape and dimension of the domain density. The E1E2 heterodimer exists in monomeric form and consists of a main globular body, presumably depicting the E1 and E2 stem/transmembrane domain, and a protruding structure representing the E2c region, based on anti-E2 Fab binding. At low resolution, a model generated from negative-stain analysis revealed the unique binding and orientation of individual or double Fabs onto the E1 and E2 components of the complex. Cryo-electron microscopy (cryo-EM) of the double Fab complexes resulted in a refined structural model of the E1E2 heterodimer, presented here. IMPORTANCE Recombinant HCV E1E2 heterodimer is being developed as a vaccine candidate. Using electron microscopy, we demonstrated unique features of E1E2 in complex with various neutralizing antibodies and small molecule inhibitors that are important to understanding its antigenicity and induction of immune response.


Assuntos
Hepacivirus , Proteínas do Envelope Viral , Humanos , Anticorpos Neutralizantes/química , Microscopia Crioeletrônica , Elétrons , Hepacivirus/fisiologia , Hepatite C , Imageamento Tridimensional , Proteínas do Envelope Viral/química , Conformação Proteica
12.
Am J Gastroenterol ; 117(12): 2075-2078, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36066458

RESUMO

INTRODUCTION: Bile duct involvement is a key finding of primary biliary cholangitis (PBC). The aim of this study was to evaluate baseline ductopenia and disease progression. METHODS: Retrospective longitudinal histological follow-up of treatment-naive patients with PBC. RESULTS: Eighty-three patients were included, with ductopenia correlated to fibrosis stage at baseline. The cumulative incidence of severe ductopenia remained stable after 5 years, whereas fibrosis continually increased over time. Baseline AST-to-Platelet Ratio Index and elevated alkaline phosphatase >2 times the normal with abnormal bilirubin were associated with ductopenia progression. DISCUSSION: Bile duct injury does not seem to follow the same course as fibrosis in PBC.


Assuntos
Colangite , Cirrose Hepática Biliar , Humanos , Cirrose Hepática Biliar/complicações , Cirrose Hepática Biliar/diagnóstico , Cirrose Hepática Biliar/epidemiologia , Estudos Retrospectivos , Ductos Biliares/diagnóstico por imagem , Ductos Biliares/patologia , Fibrose , Incidência , Colangite/diagnóstico
13.
Mol Ther Nucleic Acids ; 28: 656-669, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35615005

RESUMO

The CRISPR-Cas9 system has emerged as a powerful and efficient tool for genome editing. An important drawback of the CRISPR-Cas9 system is the constitutive endonuclease activity when Cas9 endonuclease and its sgRNA are co-expressed. This constitutive activity results in undesirable off-target effects that hinder studies using the system, such as probing gene functions or its therapeutic use in humans. Here, we describe a convenient method that allows temporal and tight control of CRISPR-Cas9 activity by combining transcriptional regulation of Cas9 expression and protein stability control of Cas9 in human stem cells. To achieve this dual control, we combined the doxycycline-inducible system for transcriptional regulation and FKBP12-derived destabilizing domain fused to Cas9 for protein stability regulation. We showed that approximately 5%-10% of Cas9 expression was observed when only one of the two controls was applied. By combining two systems, we markedly lowered the baseline Cas9 expression and limited the exposure time of Cas9 endonuclease in the cell, resulting in little or no undesirable on- or off-target effects. We anticipate that this dual conditional CRISPR-Cas9 system can serve as a valuable tool for systematic characterization and identification of genes for various pathological processes.

14.
mBio ; 13(1): e0323821, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012356

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a serious threat to global public health, underscoring the urgency of developing effective therapies. Therapeutics and, more specifically, direct-acting antiviral development are still very much in their infancy. Here, we report that two hepatitis C virus (HCV) fusion inhibitors identified in our previous study, dichlorcyclizine and fluoxazolevir, broadly block human coronavirus entry into various cell types. Both compounds were effective against various human-pathogenic CoVs in multiple assays based on vesicular stomatitis virus (VSV) pseudotyped with the spike protein and spike-mediated syncytium formation. The antiviral effects were confirmed in SARS-CoV-2 infection systems. These compounds were equally effective against recently emerged variants, including the delta variant. Cross-linking experiments and structural modeling suggest that the compounds bind to a hydrophobic pocket near the fusion peptide of S protein, consistent with their potential mechanism of action as fusion inhibitors. In summary, these fusion inhibitors have broad-spectrum antiviral activities and may be promising leads for treatment of SARS-CoV-2, its variants, and other pathogenic CoVs. IMPORTANCE SARS-CoV-2 is an enveloped virus that requires membrane fusion for entry into host cells. Since the fusion process is relatively conserved among enveloped viruses, we tested our HCV fusion inhibitors, dichlorcyclizine and fluoxazolevir, against SARS-CoV-2. We performed in vitro assays and demonstrated their effective antiviral activity against SARS-CoV-2 and its variants. Cross-linking experiments and structural modeling suggest that the compounds bind to a hydrophobic pocket in spike protein to exert their inhibitory effect on the fusion step. These data suggest that both dichlorcyclizine and fluoxazolevir are promising candidates for further development as treatment for SARS-CoV-2.


Assuntos
COVID-19 , Hepatite C Crônica , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
15.
Mol Ther Methods Clin Dev ; 23: 597-605, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34853804

RESUMO

The sodium-dependent taurocholate co-transporting polypeptide (NTCP)-S267F variant is known to be associated with a reduced risk of hepatitis B virus (HBV) infection and disease progression. The NTCP-S267F variant displays diminished function in mediating HBV entry, but its function in HBV infection has not been fully established in more biologically relevant models. We introduced the NTCP-S267F variant and tested infectivity by HBV in genetically edited hepatic cells. HepG2-NTCP clones with both homozygous and heterozygous variants were identified after CRISPR base editing. NTCP-S267F homozygous clones did not support HBV infection. The heterozygote clones behaved similarly to wild-type clones. We generated genetically edited human stem cells with the NTCP-S267F variant, which differentiated equally well as wild-type into hepatocyte-like cells (HLCs) expressing high levels of hepatocyte differentiation markers. We confirmed that HLCs with homozygous variant did not support HBV infection, and heterozygous variant clones were infected with HBV equally as well as the wild-type cells. In conclusion, we successfully introduced the S267F variant by CRISPR base editing into the NTCP/SLC10A gene of hepatocytes, and showed that the variant is a loss-of-function mutation. This technology of studying genetic variants and their pathogenesis in a natural context is potentially valuable for therapeutic intervention against HBV.

16.
Nat Med ; 27(10): 1672-1673, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34642493
17.
Hepatol Commun ; 5(11): 1888-1900, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34558806

RESUMO

Nucleoside analogue (NA) therapy for chronic hepatitis B (CHB) is associated with improved clinical outcomes, but usually requires long-term use. Whether treatment can be safely withdrawn and the factors associated with post-withdrawal outcome are not well defined. To assess long-term outcomes after stopping antiviral therapy, patients with hepatitis B e antigen (HBeAg)-negative CHB who had received antiviral therapy for 4 or more years with hepatitis B virus (HBV) DNA (≤100 IU/mL) were prospectively withdrawn from antiviral therapy and monitored monthly for the initial 6 months and every 3 months thereafter. Those with clinical relapse were retreated according to severity of relapse. Fifteen patients were withdrawn from lamivudine (4), adefovir (5), or a combination of the two (6) after a mean treatment duration of 8.4 years. The mean age was 45 years, 13 were male, and 8 were initially HBeAg-positive before treatment. After a mean follow-up of 6.6 years, outcomes differed by pretreatment HBeAg status. All patients who were HBeAg+ before treatment experienced virological relapse (8 of 8); 6 of 8 experienced clinical relapse; 4 of 8 had ALT flares; 5 of 8 required re-initiation of treatment, one of whom cleared hepatitis B surface antigen (HBsAg); and 3 of 8 remained off treatment, one of whom cleared HBsAg. In contrast, 4 of 7 patients who were HBeAg-negative before treatment experienced virological relapse, 3 of 7 experienced clinical relapse, and 1 of 7 had an alanine aminotransferase (ALT) flare. None restarted treatment, and 4 of 7 cleared HBsAg. Low pre-withdrawal HBsAg level was predictive of HBsAg loss. Conclusion: NA therapy can be safely withdrawn with long-term remission and high rates of HBsAg loss in most HBeAg-negative patients without cirrhosis. Patients who were initially HBeAg+ should not be withdrawn from treatment, because clinical relapse was frequent and often severe.


Assuntos
Antivirais/administração & dosagem , Hepatite B Crônica/tratamento farmacológico , Suspensão de Tratamento , Adulto , DNA Viral/sangue , Feminino , Antígenos de Superfície da Hepatite B/sangue , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/sangue , Humanos , Quimioterapia de Indução , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Recidiva , Resposta Viral Sustentada
19.
J Hepatol ; 75(6): 1335-1345, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34363922

RESUMO

BACKGROUND & AIMS: HBV consists of 9 major genotypes (A to I), 1 minor strain (designated J) and multiple subtypes, which may be associated with different clinical characteristics. As only cell lines expressing genotype D3 have been established, herein, we aimed to establish stable cell lines producing high-titer cell culture-generated HBV (HBVcc) of different genotypes and to explore their infectivity, virological features and responses to treatment. METHODS: Stable cell lines producing high titers of HBV genotype A2, B2, C1, E, F1b and H were generated by transfecting plasmids containing a replication-competent 1.3x length HBV genome and an antibiotic marker into HepG2 cells that can support HBV replication. Clones with the highest levels of HBV DNA and/or HBeAg were selected and expanded for large-scale purification of HBVcc. HBVcc of different genotypes were tested in cells and a humanized chimeric mouse model. RESULTS: HBVcc genotypes were infectious in mouse-passaged primary human hepatocytes (PXB cells) and responded differently to human interferon (IFN)-α with variable kinetics of reduction in HBV DNA, HBeAg and HBsAg. HBVcc of all genotypes were infectious in humanized chimeric mice but with variable kinetics of viremia and viral antigen production. Treatment of infected mice with human IFN-α resulted in modest and variable reductions of viremia and viral antigenemia. HBVcc passaged in humanized chimeric mice (HBVmp) infected PXB cells much more efficiently than that of the original HBVcc viral stock. CONCLUSIONS: Herein, we generated stable cell lines producing HBV of various genotypes that are infectious in vitro and in vivo. We observe genotype-associated variations in viral antigen production, infection kinetics and responses to human IFN-α treatment in these models. LAY SUMMARY: Stable cell lines producing high-titer cell culture-generated hepatitis B virus (HBV) of various genotypes were established. HBV genotypes showed stable infectivity in both in vitro and in vivo models, which are valuable tools for antiviral development.


Assuntos
Genótipo , Hepatite B/complicações , Animais , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/estatística & dados numéricos , Modelos Animais de Doenças , Hepatite B/genética , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/patogenicidade , Camundongos
20.
ACS Med Chem Lett ; 12(8): 1267-1274, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34394844

RESUMO

SARS-CoV-2 entry into host cells relies on the spike (S) protein binding to the human ACE2 receptor. In this study, we investigated the structural dynamics of the viral S protein at the fusion peptide (FP) domain and small molecule binding for therapeutics development. Following comparative modeling analysis and docking studies of our previously identified fusion inhibitor chlorcyclizine, we performed a pharmacophore-based virtual screen and identified two novel chemotypes of entry inhibitors targeting the FP. The compounds were evaluated in the pseudoparticle viral entry assay and SARS-CoV-2 cytopathic effect assay and showed single-digital micromole inhibition against SARS-CoV-2 as well as SARS-CoV-1 and MERS. The characterization of the FP binding site of SARS-CoV-2 S protein provides a promising target for the structure-based development of small molecule entry inhibitors as drug candidates for the treatment of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...